CHAPTER REVIEW

Solve Linear Systems by Multiplying First

pp. 398-an

Alg. 9.0

EXAMPLE

Solve the linear system:
$$x - 2y = -7$$
 Equation 1 $3x - y = 4$ Equation 2

STEP 1 Multiply the first equation by -3.

$$x - 2y = -7$$
 \times (-3) $-3x + 6y = 21$ $3x - y = 4$

STEP 2 Add the equations.

$$5y = 25$$

STEP 3 Solve for v.

$$y = 5$$

STEP 4 Substitute 5 for y in either of the original equations and solve for x.

$$x-2y=-7$$
 Write Equation 1.
 $x-2(5)=-7$ Substitute 5 for y.

$$x = 3$$
 Solve for x.

15345 1835 ▶ The solution is (3, 5). You can check the solution by substituting 3 for x and 5 for y in each of the original equations. of the of no

EXAMPLES 1 and 2

on pp. 398-399 for Exs. 13-15

EXERCISES

Solve the linear system using elimination.

13.
$$x + 6y = 28$$

 $2x - 3y = -19$

14.
$$3x - 5y = -7$$

 $-4x + 7y = 8$
15. $5x = 3y - 2$
 $3x + 2y = 14$

15.
$$5x = 3y - 2$$

 $3x + 2y = 14$

Solve Special Types of Linear Systems

pp. 405-411

Alg. 9.0

EXAMPLE

Show that the linear system has no solution.

$$-2x + y = -3$$
 Equation 1
 $y = 2x + 1$ Equation 2

Rewrite -2x + y = -3 as y = 2x - 3. Then graph the linear system.

The lines are parallel because they have the same slope but different y-intercepts. Parallel lines do not intersect, so the system has no solution.

EXERCISES

EXAMPLES 1, 2, and 3

on pp. 405-407 for Exs. 16-18

16.
$$x = 2y - 3$$

 $1.5x - 3y = 0$

17.
$$-x + y = 8$$

 $x + 8 = y$

18.
$$4x = 2y + 6$$

 $4x + 2y = 10$

for Ex.

EXAN

on p.

for Ex.